DEPT: Depth Estimation by Parameter Transfer for Single Still Images
نویسندگان
چکیده
In this paper, we propose a new method for automatic depth estimation from color images using parameter transfer. By modeling the correlation between color images and their depth maps with a set of parameters, we get a database of parameter sets. Given an input image, we compute the high-level features to find the best matched image sets from the database. Then the set of parameters corresponding to the best match are used to estimate the depth of the input image. Compared to the past learning-based methods, our trained database only consists of trained features and parameter sets, which occupy little space. We evaluate our depth estimation method on the benchmark RGB-D (RGB + depth) datasets. The experimental results are comparable to the stateof-the-art, demonstrating the promising performance of our proposed method.
منابع مشابه
Planelet Transform: A New Geometrical Wavelet for Compression of Kinect-like Depth Images
With the advent of cheap indoor RGB-D sensors, proper representation of piecewise planar depth images is crucial toward an effective compression method. Although there exist geometrical wavelets for optimal representation of piecewise constant and piecewise linear images (i.e. wedgelets and platelets), an adaptation to piecewise linear fractional functions which correspond to depth variation ov...
متن کاملPossessions of viscous dissipation on radiative MHD heat and mass transfer flow of a micropolar fluid over a porous stretching sheet with chemical reaction
This article presents the heat and mass transfer characteristics of unsteady MHD flow of a viscous, incompressible and electrically conducting micropolar fluid in the presence of viscous dissipation and radiation over a porous stretching sheet with chemical reaction. The governing partial differential equations (PDEs) are reduced to ordinary differential equations (ODEs) by applying suitable si...
متن کاملCamera Pose Estimation in Unknown Environments using a Sequence of Wide-Baseline Monocular Images
In this paper, a feature-based technique for the camera pose estimation in a sequence of wide-baseline images has been proposed. Camera pose estimation is an important issue in many computer vision and robotics applications, such as, augmented reality and visual SLAM. The proposed method can track captured images taken by hand-held camera in room-sized workspaces with maximum scene depth of 3-4...
متن کاملConvolutional Neural Network based Age Estimation from Facial Image and Depth Prediction from Single Image
Convolutional neural network (CNN), one of the most commonly used deep learning methods, has been applied to various computer vision and pattern recognition tasks, and has achieved state-of-the-art performance. Most recent research work on CNN focuses on the innovations of the structure. This thesis explores both the innovation of structure and final label encoding of CNN. To evaluate the perfo...
متن کاملSingle station estimation of earthquake early warning parameters by using amplitude envelope curve
In this study, new empirical relationships to estimate key parameters in Earthquake Early Warning (EEW) system including magnitude, epicentral distance and Peak Ground Acceleration (PGA) are introduced based on features of the initial portion of P-wave’s amplitude envelope curve. For this purpose, 226 time series recorded by bore-hole accelerometers of Japanese KiK-net are processed for earthq...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014